Thoughts about PXIE MEBT in FY15

A. Shemyakin with inputs from Jim Steimel and Vic Scarpine

November 26, 2013

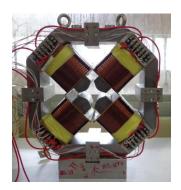
Intro

- This is a suggestion of how we can proceed after installing and RFcommissioning the RFQ in FY15
 - In this report, everything downstream of RFQ (in FY15) is referred as MEBT
- The list of measurements in the following slides is not likely to fit into FY15; it is more a possible plan of actions
 - Hopefully, it can be used for more detail discussions and eventually designing of necessary components
- Part of the discussion is validity of assumptions (next slides)

Assumptions- goals

- The PXIE goal stays to test critical elements of the front end of a CW SRF linac. For the warm part It includes:
- LEBT with the required features (not discussed here)
- Test of the CW RFQ
 - Tuning, reliability
 - Beam characterization
- Development and testing of a wideband chopping system
 - Absorber
 - Kickers
 - Drivers
 - Corresponding LLRF and diagnostics
- Vacuum system compatible with transition to SRF
- Development of diagnostics, controls, MPS etc.
- Scenario for the coming couple of years should take into account that details of the goals may change

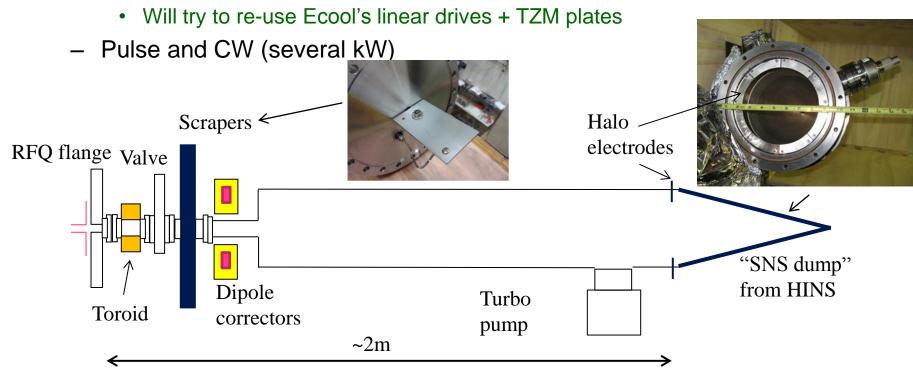
Assumptions - budget


- FY15 budget for the MEBT is assumed to be at the same level as FY14
 - Minor variations in the budget are not likely to change the plan
 - Less money means delays
 - More money will change for FY15 only details, for example
 - Add an emittance scanner
 - Full set of new BPMs
 - 21 kW absorber instead of a prototype
 - However, the FY15 budget will affect our success in FY16

Assumptions - schedule

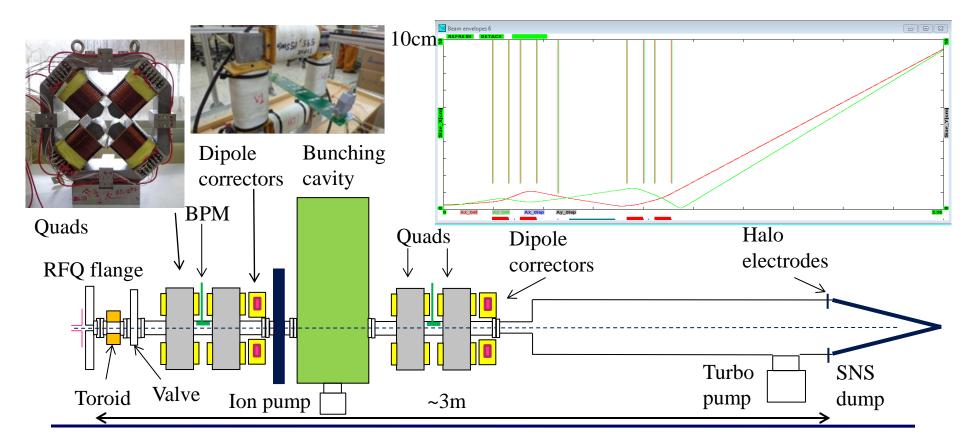
- In March 2015, RFQ is RF-commissioned and ready for the beam
- By that time, LEBT is ready
 - Pulsed and DC modes up to 10mA; elements of MPS
- MEBT components
 - 4 F-quads (two doublets) are manufactured and measured
 - The quads are assumed to be manufactured by BARC, India
 - Expected delivery date is April 2015
 - Bunching cavity prototype is successful and can be used
 - A 162.5 MHz driver is purchased
 - 4 new BPMs are ready to be used (or 2 new + 2 from HINS)
 - A reliable absorber prototype (5 kW) is ready
 - 50 Ohm and 200 Ohm kicker prototypes are ready
 - "a drive" is available for each kicker (see later)
 - 2 scraper assemblies (4 scrapers each) are ready
 - HINS elements are retrofitted for using at PXIE (see in next slides)

Possible goals for CY15


- testing the CW RFQ and elements of the CW chopping system makes sense independently on the scheme of "Injector-2"
- Preliminary characterization of the beam out of RFQ
- Testing of an absorber prototype
- Preliminary testing of kickers
- Development of diagnostics, controls, LLRF, MPS
 - Details on the following slides

Project X RFQ beam characterization (1)

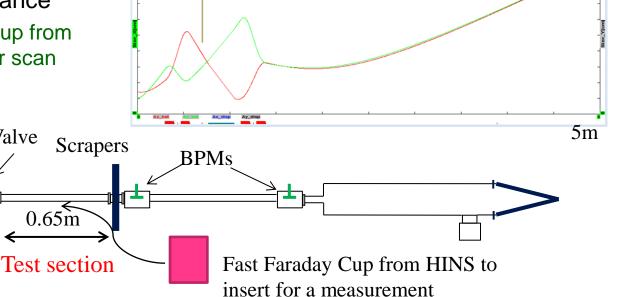
- Stage 1: first beam current, loss in RFQ, estimation of divergence
 - Quads are not likely to be ready at this time
 - Toroid (identical to LEBT's)
 - 4 electrically isolated scrapers (need to be designed); ~50 W/jaw



Project X RFQ beam characterization (2)

- Stage 2: CW beam > 10kW; estimation of energy; MPS
 - First section of MEBT in its final version.
 - 2 doublets, 2 dipole corrector sets, 2 BPMs

RFQ beam characterization (3)

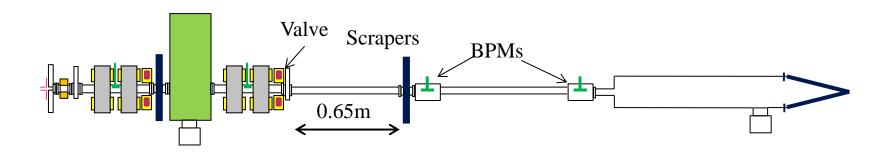

- Stage 3: energy measurement; estimation of emittances
 - Test section where equipment can be easily replaced without moving other parts
 - 2 more BPMs (may be HINS'); 1 more scraper assembly

2cm

- Transverse emittance
 - scrapers+ quad scan
- Longitudinal emittance
 - Fast Faraday Cup from HINS + buncher scan

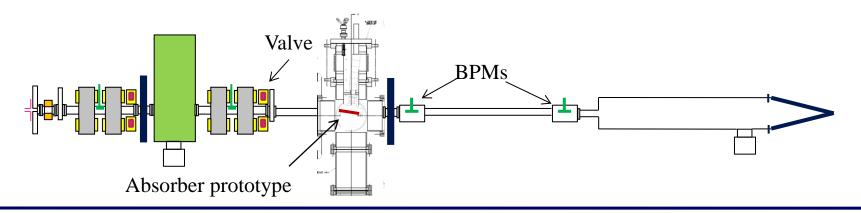
Valve

Pulse mode only



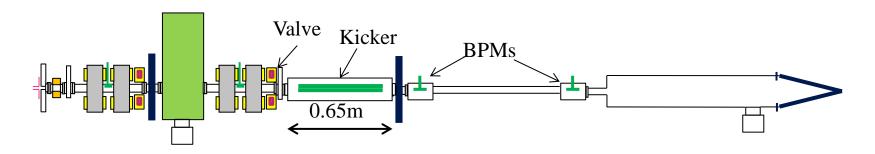
Other activity

- At the same time, the optics of the first section will be characterized
 - Quadrupole scans; trajectory response to dipole kicks
 - Using beam positions measured by BPMs
 - Bunching cavity characterization
 - Using phases measured by BPMs and the HINS' Fast Faraday Cup
- These stages requires development of BPMs, LLRF, MPS



Absorber test

- In the "nominal scenario", only the absorber prototype will be tested in FY15
 - We hope to design, manufacture, and test with e-beam the second, more robust version of the prototype in FY14
 - Testing of thermal properties, thermocycling, diagnostics...
 - Install the prototype using the can as well as pumping, and optical systems from the electron beam test stand
- The main goal is to test blistering and sputtering with H- beam of the representative density



Kickers test

- In this scenario, the kickers will be tested for
 - Electromagnetic properties
 - Measured by BPMs downstream
 - Estimation of the phase velocity: kick strength as a function of energy, varied by the bunching cavity
 - Kick at a given driver voltage
 - Operational properties
 - Survival with irradiation by beam tails
 - Vacuum properties with a beam
 - Machine Protection System
- Drivers see in the next slide

Kickers test- drivers

50 Ohm kicker

- Rent amplifier(s) similar to that used for testing of the driver's concept
 - 150W amplifier gave ~200V ptp
 - Two such amplifiers (one per plate) should give ~3 mm shift in the last BPM
 - Should be accurately measurable with an oscilloscope

200 Ohm kicker

- One 100 V driver prototype has been successfully tested
 - Already enough for a measurable deflection
- Hopefully, two 500 V drivers with characteristics close to FRS will be ready by that time
 - Would be capable for a full parameter test

Conclusion

- With the MEBT budget FY15 similar to FY14's, we should have enough equipment to make meaningful measurements
 - RFQ characterization in a reduced scope
 - No maximum power test (~10 kW instead of 21kW)
 - No phase portrait measurements
 - Only estimations for longitudinal emittance
 - Tests of the chopping system components
 - Prototypes of absorber and kickers
 - Not a direct demonstration of the bunch-by-bunch selection, but the tests should give a reliable prediction
 - Commissioning of all infrastructure
 - Making foundation for FY16 may need more funds
- Components discussed in this plan need to be tested for the present version of PIP-2 (CW – compatible 2mA linac for Booster injection)
 - I feel that the FY15 plan may be independent on details of PIP-2 development